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Abstract

Synthesizing realistic profile faces is promising for more efficiently training deep pose-invariant models for large-scale unconstrained face recognition, by populating 200 | , , , ] | , , , , Real 60° 70" 80"  90°
samples with extreme poses and avoiding tedious annotations. However, learning from synthetic faces may not achieve the desired performance due to the discrepancy 175 | i Simulated
between distributions of the synthetic and real face images. To narrow this gap, we propose a Dual-Agent Generative Adversarial Network (DA-GAN) model, which can 150 |- . fefined %
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improve the realism of a face simulator’s output using unlabeled real faces, while preserving the identity information during the realism refinement. The dual agentsare =< . | i ¢ :‘: PO .: N g B
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specifically designed for distinguishing real v.s. fake and identities simultaneously. In particular, we employ an off-the-shelf 3D face model as a simulator to generate S .l 1 e & ¢ . - H
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profile face images with varying poses. DA-GAN leverages a fully convolutional network as the generator to generate high-resolution images and an auto-encoder as the =8 s | | Refined ”‘ k . ”'.
discriminator with the dual agents. Besides the novel architecture, we make several key modifications to the standard GAN to preserve pose and texture, preserve 095 Simulated 0‘:’: - ..- --' 0
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identity and stabilize training process: (i) a pose perception loss; (ii) an identity perception loss; (iii) an adversarial loss with a boundary equilibrium regularization term. - | | | | | | | | | | .
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Experimental results show that DA-GAN not only presents compelling perceptual results but also significantly outperforms state-of-the-arts on the large-scale and 0 25000 50000 75000 100000 125000 150000 175000 200000 225000 250000 L o O Realf refined synhetic? th pAea
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challenging NIST IJB-A unconstrained face recognition benchmark. In addition, the proposed DA-GAN is also promising as a new approach for solving generic transfer Ilterations (a) Refined results of DA-GAN. (b) Feature space of real faces an SYITACHE JEE8
learning problems more effectively. DA-GAN is the foundation of our submissions to NIST 1JB-A 2017 face recognition competitions, where we won the 1st places on the Method Face verification Method Face identification
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1. We propose a novel Dual-Agent Generative Adversarial Network (DA-GAN) for photorealistic and identity preserving profile face synthesis even under extreme poses. All-Inl-One ((125) . 0.9;6 i 0.00ZL 0.922 i 0.010 | 0.823 i 0.02(7) Template Adaptation (8) | 0.118 £0.016 | 0.226 4= 0.049 | 0.928 & 0.010 | 0.977 £ 0.004
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2. The proposed dual-agent architecture effectively combines prior knowledge from data distribution (adversarial training) and domain knowledge of faces (pose and NAN (34) 0.978 - 0.003 | 0.941 +0.008 | 0.881 + 0.011 NAN (34) 0.083 - 0.000 | 0.183 £ 0.041 | 0.958 + 0005 | 0.980 = 0.005
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together with real images. To our best knowledge, our proposed DA-GAN is the first model that is effective for automatically generating augmented data for face
recognition in challenging conditions and indeed improves performance. DA-GAN won the 1st places on verification and identification tracks in the NIST IJB-A 2017
face recognition competitions. (We submitted our results for both verification and identification protocols to NIST 1JB-A 2017 face recognition competition
committee on 29th, March, 2017. We received the official notification on our top performance on both tracks on 26th, Apirl, 2017. The lJB-A benchmark dataset,
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relevant information and leaderboard can be found at https://www.nist.gov/programs-projects/face-challenges.)
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